
Proton diffusion in calcium hydroxide

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 1499

(http://iopscience.iop.org/0953-8984/2/6/009)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/6
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 1499-1507. Printed in the UK 

Proton diffusion in calcium hydroxide 
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Caracas 1041-A, AP 47726, Venezuela 

Received 21 June 1988, in final form 18 August 1989 

Abstract. A numerical method is presented for the calculation of the longitudinal relaxation 
time of proton diffusion in parallel hexagonal lattices of calcium hydroxide. A comparison 
between theoretical results and experimental data shows that the probability of a single 
proton jump is very high while the probability of two or more jumps can be almost neglected. 

1. Introduction 

A recent investigation of the magnetic relaxation of calcium hydroxide [l] showed 
evidence of at least two types of proton with different dynamics: localised precession 
and translational proton diffusion. The precession model has been confirmed by neutron 
diffraction experiments [2] , infrared spectroscopy [3] and wide-band NMR data [4]. 
However, interpretation of proton conductivity measurements suggests that the pres- 
ence of proton vacancies should be assumed [ 5 ,  61. This assumption will be used to 
explain the temperature dependence of the translational proton diffusion which was 
attributed to the shorter of the two observed Ca(OH)2 longitudinal relaxation times [l]. 
The lattice structure of calcium hydroxide has a D& (P3m) symmetry which generates 
a successive series of parallel layers with a -Ca-O-H-H-O- sequence. As the distance 
between neighbouring proton layers (0.64 A) is small compared with the distance 
between the next pair of layers, which is 4.88 A, we can assume that the proton motion 
is limited exclusively to the two bidimensional proton layers, stimulated by the presence 
of the proton vacancies mentioned above. 

Torrey [7] proposed a random-walk diffusion model in three-dimensional crystals 
with symmetry inversion which allows calculation of the T I ,  T2 and TIP relaxation times 
in the high-field approximation. This model has been applied for cubic crystals [SI but, 
unfortunately, cumbersome computations are required when it is used for calcium 
hydroxide as there is no symmetry inversion in the pair of proton layers. Therefore, in 
this paper a method is developed for the numerical calculation of the T1 relaxation time 
of a translational random-walk diffusion of the protons within two parallel planes of a 
hexagonal crystal structure. The model presented can be further developed to calculate 
the T2 and Tlp  relaxation times. At the end of this paper the theoretical results are 
compared with experimental data. 
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2. Theory 

The equation for the spin relaxation time T I ,  in the high-field approximation, can be 
generally written as follows [9]: 

where y denotes the nuclear gyromagnetic constant, wo( =yHo) is the Larmor frequency 
associated with the strong external constant field Ho and I = 4 is the proton spin. The 
functionsJ(q)(u), with q = 1 and 2, are the spectral densities of the correlation functions 
G(q)(t) and the diffusion process can be described by 

where 

and 

F f ' ( t )  = C,Y:")(e,, q 4 ) / r %  (4) 
with 

C: = 8n/15 C; = 32n/15. ( 5 )  
Here, (),, symbolises the time average over all spin pairs i, j and (rij,  Oij ,  qij) are the 
spherical coordinates of the vector rli from spin i to spinj in the coordinate system where 
H ,  is parallel to the z axis. The functions Y?) ( Oij, q i j )  are normalised second-order 
spherical harmonics. 

In order to evaluate equation (1) the spectral density functions must be calculated. 
For that purpose the time average is replaced by an ensemble average [7]: 

where P(r, ro, t)dr is the conditional probability that, if at zero time spin j is located at 
ro relative to spin i ,  at time t spin j will be inside the volume eleme'nt d r  located at r 
relative to the new position of spin i. Nc'f(ro)dris the probability that, at zero time, spin 
j is located within dro at ro relative to spin i ,  where N o  designates the number of resonant 
nuclei. For a crystalline structure 

where the sum goes over all nuclei in the lattice. Substituting ( 7 )  into (6) we get 

rk J 

The correlation function can be calculated by assuming that the proton moves 
through the lattice in the same way as a single proton would move through an otherwise 
empty lattice, jumping in a random walk to the first neighbours' sites. Let Q ( r ,  rk,t)dr 
be the conditional probability that, if at t = 0 a spin is located at rk with respect to the 
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Figure 1. Vertical projection on the two planes 
A(+) and B(0 )  of the hexagonal lattices of 
Ca(OH)* which are separated by the vertical dis- 

t * * t t  

+ + + + + + tance c,. rkA and r,, are defined in the text. 

origin, which is a lattice site, this spin moves to the position r at time t. Now, P(r,  rk, t )  
can be expressed as follows: 

p(r,  rk , t)  = 2 Q(r, 7 0, t)Q(ri - rk , r k  , t)fi[r - (r, - r , ) ]  (9) 
r1rj 

where the sum goes over all lattice sites. 
Equations (9) and (8) lead us to 

G(')(f) = 2 Q(rj> 07 t)Q(ri - rk, rk, t )Ff)(rk)Ff)*(rc  - r , )*  (10) 
rkrlrl 

If Rfl(rl ,  rk) denotes the probability that a spin inn jumps results in a change of the initial 
vector position from rk to rk + rf, then 

2 

where wn(t) is the probability that n jumps take place in the time interval (0, t ) .  For wn(t),  
it is usual to assume a Poisson distribution where z is the average waiting time of the 
proton at the lattice site: 

w,(t) = (I/n!>(t/t)" exp(-t/t). (12) 

Substituting (11) and (12) in (10) we get 

x Ff)(rk)@)*(ri  - r j > .  (13) 

Since we assume just single jumps to nearest-neighbour sites, then the proton will hop 
consecutively between the two plane hexagonal lattices (A and B) separated by the 
vertical distance C,  (figure 1). If rkA represents the vector from the origin 0 to any point 
K in the hexagonal lattice A (where 0 is located), and rkB is the vector from 0 to any 
point K in the lattice B, then the probabilities Rn(r17 rk) fulfil the following symmetry 
conditions: 

Rn(rl, r k A )  = R n ( r l ,  O )  (14a) 

Rn(rl,rkB) = Rn(-rl,o)* (14b) 
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Using these equations in (13) and substituting the result into (2), the spectral density 
becomes 

with 

where N = 0 , 1 , 2 .  . . and ri is a unit vector normal to the plane A pointing towards the 
plane B. Furthermore, rkA and rkA run over all the sites of lattice A and likewise r k B  and 
riB over all the sites of lattice B, while r oints to lattice A or B. In the last equation, all 
terms which cancel the arguments of F f  have to be excluded since two protons cannot 
occupy simultaneously the same site. The probabilities R,\,(r, 0) can be calculated recur- 
sively [ 101. 

For polycrystalline samples expression (17) has to be averaged over all crystal 
orientations with respect to Ho: 

P 

with 

and 
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Figure 2. Double logarithmic plot of T I  
against m o t  for Ca(OH),, in units of 
5m0a6y-4fi-21-' ( I  + l)-', calculated for N,,, = 
1,2,5,26 with N,,, = upper limit of the N sum in 
equation (21). 

In addition 

( P ' ( W ) )  = 4(1(1)(W)). 

Substituting (19) and (20) into equation (l), we finally obtain: 

Figure 2 illustrates the general behaviour of the longitudinal relaxation time for various 
N summations symbolised by N,,,, which always indicates the sum of integrals from 0 
to N,,,. From the graph it is easy to see that the Tl curves coincide on the right- 
hand side of the minimum and differ considerably in shape on the left-hand side. This 
discrepancy increases with increasing N,,,, indicating width broadening of the T ,  curve, 
displacement of the minimum and loss of the symmetry which separates the complete 
T I  curve into two regions. 

3. Discussion 

In a recent paper [l] concerning proton dynamics in Ca(OH)2, two longitudinal relax- 
ations times of sPP-type were distinguished, in which the shorter one was attributed to 
a translational proton motion in bidimensional lattice layers. The measured relaxation 
time curve has a T 1  minimum of about 7 ms at a temperature near 267 K and an activation 
energy of 0.44 eV. At a temperature close to 333 K the microdynamical mechanism 
defined by this relaxation time is dominant while at lower temperatures its influence 
decreases rapidly since it contributes little with 8% of the total relaxation below 285 K. 

In the last section a formula was deduced for the longitudinal relaxation time of 
proton diffusion in a pair of bidimensional lattice layers (equation (21)) .  In order to 
compute the relaxation time using that equation we must evaluate the Dp (i  = 1, 2,  
3, . . .) values. This was done using the lattice constants of Ca(OH), at 260 K (at the 
T I  minimum) interpolated from experimental data [ll]. Table 1 shows some of the 
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1 / T  K - ' I  

Figure 3. Temperature dependence of the 
measured values of the T ,  relaxation time [l]. 
The full curves are the numerically calculated T I  
curves for various numbers of proton jumps N,,,,,. 

Table 1. List of Dp values for a lattice temperature of -13 "C 

Dp 69.284 12.825 20.732 6.739 11.016 4.837 7.354 3.908 

i o  1 2 3 4 5 6 7 

Dp 5.795 3.336 4.748 2.932 4.015 2.628 3.543 2.389 

i 8  9 10 11 12 13 14 15 

computed Dp data. The splitting in two different Do sets (D!i and Di i+l )  is generated 
by the symmetry of the proton layers and cannot be observed in cubic lattices [7,10,12]. 

In order to compare the theoretical curve with the experimental results (shown in 
figure 3), we have assumed that the t against temperature relationship follows an 
Arrhenius law: 

t = zo exp(E/kT) (22) 
where Tis the absolute temperature of the sample and E a thermal activation energy. 
The latter can be computed from the slopes of both wings of the T1 curve giving, of 
course, 0.44 eV as calculated before. Starting out from the fact that all curves must 
coincide in the low-temperature range, in accord with the experimental data, we obtain 
simultaneously a single value to = 6.87 x 

Since N,,, = 1 gives the best fitting, we conclude that the probability of a single 
proton jump is the highest one and the likelihood of two or more jumps decreases when 

s. 
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the N,,, value is increased. This phenomenon is an interesting result and it could be 
explained by a continuous generation and recombination of proton vacancies as pro- 
posed by Freund and Wengeler [5]. This mechanism explains the electrical conductivity 
of Mg(OH), which possesses the same atomic structure and electrical behaviour as 
Ca(OH),, and it is obviously inhibiting an overwhelming number of proton jumps. 

The proton vibration of ‘umbrella’ type [l], in this hydroxide, tends to average the 
dipolar interaction and therefore to increase the translational diffusion relaxation time 
TI. As can be easily demonstrated in our case, this effect is not very significant since a 
precession angle close to 5” contributes less than 3% to the DO values, which can be 
neglected. Furthermore, it is necessary to understand how a diffusion mechanism with 
a shorter longitudinal relaxation time than that of the umbrella precession does not 
dominate the magnetisation decay over the whole temperature range. The reason is that 
the vacancy concentration and the proton diffusion fall with decreasing temperature, 
whereas above 333 K the high number of vacancies makes the proton diffusion the 
dominant relaxation mechanism. This occurs exactly in the temperature range where 
the DC proton conductivity indicates a notable superionic behaviour [5]. 

Finally, the calculated activation energy of 0.44 eV is considerably lower than the 
reported value of 0.88 eV determined by proton conductivity measurements. However, 
such a discrepancy between NMR and conductivity data was reported and still remains 
an open question [13] which will be discussed in a forthcoming paper. 

Appendix 

Equation (15) can be written 

with 

r L T r j = r  

The theory of random flights yields for the probability Rn(r, 0): 

R n ( r ,  0) = j i . . . 1 R l ( r l ,  0 ) R 1 ( r 2 ,  0) .  . . S(rl - r2 + r3 . . .) dr l  dr2 . . . dr, 
r i  ‘ 2  rn 

(A31 
where 

A(p)exp(-ip.r)dp 

and 

A(p) = J(exp(-ip.r)a+ exp(-ip-r)p + exp(-ip.r)y) (A51 
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with r (i = a, p, y )  denoting the vector from a lattice point A to the nearest-neighbour 
positions in lattice B. Substituting the delta function in (3) by its integral expression and 
taking into account (4) and ( S ) ,  we get after integration of (3 ) ,  

R,,(r,  0) = 1 A(p)A(-p) . . . exp(-ip - r )  dp 
P 

which can be separated in 

For the case r, - rj = r: 

x exp[ip * (ri - rj  - r ) ]  d r i  d r j  d p .  

If N is an odd number, and using (7), we get after integration 

which can be rewritten as 

s,, = iR(  - r ,  0) + iR(r,  0) (Nodd). 

The above equation is zero except for r = *rkB. 
If N is even, it is easy to demonstrate that 

s,, = R,(r ,  0) (N even) 

which is zero except for r = rkA. In the same way we get for odd N: 

S r , N  = R N ( ~ >  0) (N odd) 

which cancels to zero except for r = rkB. 
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Finally, S z N  can be written for even N as: 

which gives with (7): 

S:N = i R N ( r ,  0) + Q ( R N - I ( r  - r e ,  0) + R N - l ( r  - r p ,  0) + R N - l ( r  - r, , ,  0)).  (A14) 

The values of r which do not make the last equation zero are rkA and rkA + 2CpA, where 
ri is a unit vector which is normal to the plane A and points towards the plane B. The 
sum in the parentheses is just equal to three times the probability that a spin leaving the 
origin arrives after Nsteps to a site in the lattice B with the nearest neighbours r - ri ( i  = 
a, p, y ) ,  which means: 

S I N  = BRN(r, 0) + M N ( r  - 2CpR, 0) ( N  even). (A151 
Substituting (lo), (11), (12) and (15) into (1) shows that equation (17) of 0 2 can be easily 
verified. 

References 

[l]  Moreno J A, Mizrachi S and Oppeltz V 1984 Solid State Commun. 51 597 
[2] Busing W R and Levy H A 1957 J .  Chem. Phys. 48 2032 
[3] Busing W R and Morgan H W 1958 J .  Chem. Phys. 28 998 
[4] Holuj F and Wieczorek J 1976 Can. J .  Phys. 55 654 
[5] Freund F and Wengeler H 1980 Ber. Bunsenges. Phys. Chem. 84 866 
[6] Freund F, Wengeler H and Martens R 1980J. Chem. Phys. 77 837 
[7] Torrey H C 1953 Phys. Reu. 92 962 
[8] Wolf D 1975 J .  Magn. Res. 17 1 
[9] Abragam A 1962 The Principles ofNuclear Magnetism (Oxford: Clarendon) Ch. VI11 
101 Pasemann L and Schneider H 1973 J .  Magn. Res. 9 255 
111 Petch H E 1961 Acta Crisfullogr. 14 950 
121 Sholl C A  1974 J .  Phys. C: Solid State Phys. 7 3378 
131 Arribart H and Piffart Y 1983 Solid State Commun. 45 571 


